

Admin use only		
Location		
Website		
Learning Platform		
Policies File		
Staff room		
Headteacher's File		
Policies Log updated		

Guidance

Place value language: HTU, or HTO?

We will use the word 'units' and the symbol, ' U ' to avoid confusion with the number ' 0 ', however, the children will come into contact with the language 'Ones' and so these two terms will need to be used interchangeably when talking about the 'Ones/units number', or 'Ones/units digit'.

Place value: to use ',' or not to use ','?

For larger numbers we will use numbers with and without commas interchangeably, e.g. 1,000 will be written as 1000 . This is because the comma is used sometimes as a decimal point when working in Euros and also in separating numbers written in a sequence. It is expected that the children will have the opportunity to read and write numbers using the comma and be taught of its significance in denoting thousands, then millions.

Equal (=) opportunities: what do we call it and when?

From foundation to year 6 the word, 'equals' will be used and we will say it means, 'the same as...' e.g. $10=3+7$ will be read as, 'ten equals three add seven,' which means, 'ten is the same as three add seven'; it will then be explained that, 'this means what's on this side [10] is the same value as what's on this side, [3+7]: looks different, but means the same.'
Children will also from year 1 onwards come into contact with balanced equations, or simply two number sentences that are equal, in order to reinforce the concept of 'equals' e.g. $3+7=6+4$. Opportunities like this should not be missed, for example when reinforcing number bonds e.g. $10+0=7+3=6+4$, or missing number calculations as an App/Challenge e.g. $20+4=19+$ \qquad

AREs: outwards, not upwards.

As much as possible, and in order to ensure that children are given the opportunity to become 'masters' at a particular stage in their mathematics, children should be kept within their AREs. That means teaching to ensure some children keep up and that others are challenged in their thinking. Resist the temptation to give children greater numbers with which to calculate: children's learning should be deepened and not just accelerated - use Apps/Challenges in order to support this, such as missing number sentences, problem solving - worded and/or visual.

'Keep up!' How do we make sure we can stay together?

If a child is struggling, go back and use a concrete resource to reinforce a concept; use smaller numbers, or break down the learning into smaller steps. Let the children do the working physically in order to secure a new concept: pre-teaching will be used during booster groups to ensure all children have the best chance of moving forward in their learning and boosters will pick up the learning using concrete apparatus with smaller numbers and/or the stage before if a concept is still not understood.

Variety is the spice of life. (Varied Fluency.)

We must ensure that children can experience calculations in a range of contexts, as they learn. Use money, or other measures, including time, to give calculations a context. Apps/Challenges could be contextualised problems, or the learning could be delivered through this to begin with. Any calculations done using shape, geometry or measure must be put into the appropriate area on your maths display.

Facts! Facts and more facts!

We must ensure that children are exposed to real-maths and related facts eg how many months in a year etc. The Maths Lead will provide a maths facts to discuss each week.

Loxdale Primary School, Dudley Street, Bilston, WV14 OAU

Addition		Count on, add, one more than, how many, altogether, greater than, 'and', sum, total, double, near double, plus, increase, round			
Year	Examples	Concrete	Pictorial	Abstract	Examples of going deeper (Dong Nao Jin) or real-world context
Early Yrs	What is 4 add 3?	Use Numicon tiles, or concrete apparatus to find a total.		$\begin{aligned} & 4+3=7 \\ & 7=4+3 \end{aligned}$	There are two people in a car and 2 more get in. How many people are in the car?
1	There are 4 people on a bus. 3 more get on. How many on the bus now? Count 4 cakes. Count 3 cakes. How many altogether?	As reception, but introduce number tracks and position concrete apparatus on a track, pre-bar model. Regrouping to make 10 on a tens frame. Use tens frame, counters and cubes to support counting on.	?	As Reception. Addition fact family: $\begin{aligned} & 4+3=7 \\ & 7=4+3 \end{aligned}$ Missing number equation: $4+\ldots=7$ Adding two digit numbers to ones. Children see total amount first. $\begin{aligned} & 14+2=16 \\ & 16=14+2 \end{aligned}$	There are four children on the seesaw. Two children are on one side. How many children are on the other side? $\begin{aligned} & 2+\square=4 \\ & 4-2=\square \end{aligned}$
2	How many are 5, 8 and 7 altogether? What must I add to 14 to make 20? What is 24 add 15 ?	Use Dienes to reinforce place value when adding 2-digit numbers - set out as columnar		$\begin{aligned} & 8+7+5= \\ & =8+7+5 \end{aligned}$ Use linear number sentences: children to find bonds they know. $\begin{array}{r} 20+4 \\ +\quad 10+5 \\ \hline 30+9 \end{array}=39$	Jessica writes... $23+10=32$ Without telling her the answer, can you explain how you know she's wrong?

		addition. Also use hundred squares and number tracks.	Continue to use fact families, bar models and other number fact representations. Also count in tens on a number line.	Use this pre-columnar addition to reinforce place value. Children will apply their understanding of place value to addition and begin to partition 2-digit numbers and add in a vertical form.	
Addition ${ }^{\text {V }}$ Vocabular		Count on, add, one more than, how many, altogether, greater than, 'and', sum, total, double, near double, plus, increase, round			
Year	Examples	Concrete	Pictorial	Abstract	Examples of going deeper (Dong Nao Jin) or real-world context
3	Find the total of 254 and 126? Find the difference between 252 and 288?		Continue to use fact families and other pictorial representations.	$\begin{array}{r} 200+50+4 \\ +100+20+6 \\ \hline 300+70+10 \\ \hline \end{array}$ Expanded columnar addition supports the concept of place value, leading to formal columnar addition with carrying. $\begin{array}{r} 254 \\ +\quad 126 \\ \hline 380 \\ \hline 1 \end{array}$	Fill in the blanks.
4	Add 3246 to 1466?	Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. Place value counters support working with greater numbers.	3246 1466 $?$ The bar model and the number line continue to support addition.	$\begin{array}{r} 3246 \\ +\quad 1466 \\ \hline 4712 \\ 11 \end{array}$ Formal written methods will combine numbers according to their place value. Numbers with up to 2d.p. will be added, in the context of money.	Choose two items and find the total cost. Choose three items and find the total cost.

Loxdale Primary School, Dudley Street, Bilston, WV14 OAU

2	Difference Lisa is \qquad years old. Her sister is \qquad years old. Find the difference in age between them.	Cubes and Numicon can be used to reinforce the 'difference'. Use Dienes to support taking away using columnar addition.	Count on to find the difference, or use the bar model to represent differences. Representations will support counting back, or require a method that uses take away.	$\begin{aligned} & 12-11=1 \\ & 12-\ldots=11 \\ & 11=12-\ldots \end{aligned}$ Finding the difference can be used to support subtracting two numbers which are 'close together'. This will support mental calculations involving single and 2-digit numbers. $\begin{array}{r} 80+{ }^{80} 9 \\ -\quad 30+9 \\ \hline 50+3=53 \end{array}$ Expanded subtraction supports the place value of 2 -digit numbers.	James has 87p. He spends 15 p at the shop to buy sweets. How much does he have left?
Subtraction Vocabuta		Count back (from, to), take (away), low many are left/left over, less, count on, difference, decrease, minus, remove.			
Year	Examples	Concrete	Pictorial	Abstract	Examples of going deeper (Dong Nao Jin) or real-world context
3	Find the difference between 72 and 46 ? What is 152 minus 33?	Use Dienes to support place value when taking away using columnar addition.		Expanded method in year 2 leads to compact method with rearranging: $\begin{array}{r} 1^{4} 5^{12} \\ -\quad 33 \\ \hline 119 \end{array}$	What could the missing numbers be? What could they not be? How do you know?

Multiplication		Groups, sets, altogether, equals, count on, multiples, times, multiply, double, once, twice, three times etc., repeated addition, array, pairs, product, factors.			
Year	Examples	Concrete	Pictorial	Abstract	Examples of going deeper (Dong Nao Jin) or real-world context
Early Yrs.	Can you make 3 lots of 2? What is double 2?	Children will use apparatus, to make 'lots of'. They see that a Numicon '2' tile has the same value as two objects - could be done by placing marbles on top of Numicon, for example. Use apparatus to reinforce doubling. Classroom objects and familiar objects could be used to help further understanding.	Pictures of Numicon could be used to reinforce multiples. Ladybirds could be used to reinforce doubling. Groups of objects could be shown, using shapes or simple outlines.	"Double 2 is 4" should be considered as " 2 add 2 equals 4".	There are two birds sat on a branch. Two more birds join them. How many birds are there?
1	What are 2 lots of 3 ?	Children will continue to use Numicon, recognising a tile as representing a group. Groups of objects, such as cubes will also be used to secure the understanding of what a 'group', or 'set' is. Set these out in and use the language 'array' wherever possible.	$\triangle x \times x \times$ Simple drawings. Questioning continues to distinguish counting 'the groups' and 'altogether'. Also use drawn arrays. ' 3×2 =' represented as: But also seeing that ' 2×3 =' has the same value, reinforcing the commutative law.	Children will begin to record multiplication number sentences themselves e.g. $3 \times 2=6$. Adding missing number equations into learning $\begin{aligned} & 3 x _=6 \\ & 2 x_{\ldots}=6 \end{aligned}$	How many pennies would you need to buy this eraser? Ten lots one pence

Calculations Policy					
Year	Examples	Concrete	Pictorial	Abstract	Examples of going deeper (Dong Nain) ? real-world context
2	I have 3 pairs of shoes. How many shoes do I have altogether?	Numicon and cubes will continue to support multiplication: Numicon reinforcing groups; cubes reinforcing arrays and commutativity. Place value counters could begin to reinforce multiplication with greater numbers e.g. $10 \times 4=$	Arrays set out by children support the concept of multiplication being commutative (e.g. 3×2, or 2×3). Children will be asked to group objects by drawing round them: 'Real life' objects could also be used during this activity e.g. using pencils and	Children will record and identify multiplication as repeated addition: $\begin{aligned} & 2+2+2=6 \\ & 2 \times 3=6 \end{aligned}$	Agree or disagree? This shows 2×6

Multiplication		Groups, sets, altogether, equals, count on, multiples, times, multiply, double, once, twice, three times etc., repeated addition, array, pairs, product, factors.			
Year	Examples	Concrete	Pictorial	Abstract	Examples of going deeper (Dong Nao Jin) or real-world context
3	What is 24 multiplied by 3? What is 40 times 3?	Use concrete apparatus to show the groups. Use counters: Or Dienes:	Use pictorial representations of the concrete apparatus. Also use the number line: \qquad	Children will partition a number, double each part and then recombine. Use smile multiplication to multiply numbers with lots of 'Os'. This supports mental calculations:	Sam used the strategy of partitioning the two digit number into tens and ones to do this multiplication. 25×7 Which of these calculations did he use to find the product? Explain your reasoning. $140+35$ $70+70+35$ $147+28$ $100+75$ Fill in the missing number $\begin{array}{r} 41 \\ \times \frac{\square}{4} \\ \times \frac{4}{48} \end{array} \times \frac{\square \square}{8} \quad \times \frac{4}{8}$
4	Calculate $13 \times 4 ?$ $24 \times 3 \text { is? }$ Multiply 18 by $13 ?$	Use arrays (physical or drawn) in the grid to show how the number is calculated. Use dienes in a place value grid to show multiples of a number $13 \times 4=$	Use pictorial representations of physical apparatus including sketching of grid method with Dienes and place value counters:	Use numbers in the grid method:	Fill in the missing digits. How many solutions are there for each problem?

Division		Vocabulary: \quad Count, share, group, remainder, divided by, divisible by, divided into, quotient, shared equally			
Year	Examples	Concrete	Pictorial	Abstract	Examples of going deeper (Dong Nao Jin) or real-world context
4	Divide 42 by 3? Is 172 divisible by 4 ? Look at order of teaching for Year 3 and revise as necessary!	Use place value counters to divide using the bus stop method alongside: $42 \div 3=$ (1) (1) Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look at how many are in 1 group: the answer is 14.	Number lines and arrays continue to support children in their multiplication. Number lines can be used to reinforce mental calculations e.g. $257 \div 7=$ Estimate first, using times tables knowledge and a number line to count on.	Formal written methods begin to include dividing single digit numbers into 3-digit numbers: 043 $4 \longdiv { 1 ^ { 1 } 7 ^ { 1 2 } }$ Decimals introduced in the context of money. Formal written methods with remainders expressed as fractions should also be introduced if children are confident. e.g. $43 \div 2=21 r 1$ or $21 \frac{1}{2}$ when the $\frac{1}{2}$ means one out of two equal parts that we were dividing by.	Fill in the missing digits

Loxdale Primary School, Dudley Street, Bilston, WV14 OAU

Division		Count, share, group, remainder, divided by, divisible by, divided into, quotient, shared equally			
Year	Examples	Concrete	Pictorial	Abstract	Examples of going deeper (Dong Nao Jin) or real-world context
5	256 people were travelling by minibus to a football match. Each minibus could carry 17 people. How many minibuses did the people need?	Use physical apparatus, especially counters, to reinforce how the bus stop method works.	Use number lines, arrays, and pictorial representations of counters to support calculations. The bar model can support problem solving when dividing.	Long Division HTU $~: ~ T U$: ThHTU \div TU Children first calculate known multiples in order to 'chunk': $\begin{aligned} & 1 \times 17=17 \\ & 2 \times 17=34 \\ & 5 \times 17=85 \\ & 10 \times 17=170 \end{aligned}$ Then use this to subtract 'chunks' of the number: $\begin{aligned} & \text { e.g. } 1 7 \longdiv { 2 5 6 } + 5 = 1 5 r 1 \\ & \frac{170}{86}(10 \times 17) \\ & \frac{85}{01}(5 \times 17) \end{aligned}$ 16 minibuses needed.	Fill in the missing digits in the boxes. How many solutions can you find?
6				Long and short division with decimals and expressing remainders as fractions or decimals. $\begin{aligned} & \text { e.g. 17) } \begin{array}{c} 15^{1 / 17}{ }^{17} \\ \frac{170}{66} \\ \frac{51}{15} \end{array} \\ & \text { e.g. } 5 \longdiv { 1 4 . 4 } \begin{array} { l } { 7 ^ { 2 } 2 . . ^ { 2 } 0 } \end{array} \end{aligned}$	Refer to parts of bus stop number sentence and use same language when referring to fractions this language may need to be interchangeable.

